
bc1.levels( AA="AA", Aa="Aa", miss.val="--")
ri.levels( AA="AA", aa="aa", miss.val="--")
f2.levels( AA="AA", Aa="Aa", aa="aa", not.aa="A-", not.AA="a-",
miss.val="--")
aa
AA
NA
s are automatically detected, so this is only needed
if string values are used to denote missing values.AA
, Aa
, aa
, not.aa
, not.AA
, and
miss.val
. For RI and BC1 setups, those that do not apply will
be unnamed and set to "nil"
make.analysis.obj
### show the defaults:
f2.levels()
bc1.levels()
ri.levels()
### suppose that 1,2,3 are codes used in F2:
f2.levels(1,2,3)
### show what would happen changing "Aa" to "H"
f2.levels(Aa="H")
bc1.levels(Aa="H")
Run the code above in your browser using DataLab