Learn R Programming

brainGraph (version 1.0.0)

cor.diff.test: Calculate the p-value for differences in correlation coefficients

Description

Given two sets of correlation coefficients and sample sizes, this function calculates and returns the z-scores and p-values associated with the difference between correlation coefficients. This function was adapted from http://stackoverflow.com/a/14519007/3357706.

Usage

cor.diff.test(r1, r2, n1, n2, alternative = c("two.sided", "less", "greater"))

Arguments

r1
Numeric (vector or matrix) of correlation coefficients, group 1
r2
Numeric (vector or matrix) of correlation coefficients, group 2
n1
Integer; number of observations, group 1
n2
Integer; number of observations, group 2
alternative
Character string specifying the alternative hypothesis test to use; one of: 'two.sided' (default), 'less', 'greater'

Value

A list containing:
p
The p-values
z
The z-score for the difference in correlation coefficients

Examples

Run this code
## Not run: ------------------------------------
# kNumSubjs <- summary(covars$Group)
# corr.diffs <- cor.diff.test(corrs[[1]][[1]]$R, corrs[[2]][[1]]$R,
#                             kNumSubjs[1], kNumSubjs[2], alternative='two.sided')
# edge.diffs <- t(sapply(which(corr.diffs$p < .05), function(x)
#                        mapply('[[',
#                               dimnames(corr.diffs$p),
#                               arrayInd(x, dim(corr.diffs$p)))
#                               ))
## ---------------------------------------------

Run the code above in your browser using DataLab