trainset <- sample(1:nrow(iris), 0.5*nrow(iris))
validset <- setdiff(1:nrow(iris), trainset)
# Train and predict at once
pred_scores <- brif(Species~., data = iris, subset = trainset,
newdata = iris[validset, 1:4], type = 'score')
pred_labels <- brif(Species~., data = iris, subset = trainset,
newdata = iris[validset, 1:4], type = 'class')
# Confusion matrix
table(pred_labels, iris[validset, 5])
# Accuracy
sum(pred_labels == iris[validset, 5])/length(validset)
# Train using the formula format
bf <- brif(Species~., data = iris, subset = trainset)
# Or equivalently, train using the data.frame format
bf <- brif(iris[trainset, c(5,1:4)])
# Make a prediction
pred_scores <- predict(bf, iris[validset, 1:4], type = 'score')
pred_labels <- predict(bf, iris[validset, 1:4], type = 'class')
# Regression
bf <- brif(mpg ~., data = mtcars)
pred <- predict(bf, mtcars[2:11])
plot(pred, mtcars$mpg)
abline(0, 1)
# Optionally, delete the model object to release memory
rm(list = c("bf"))
gc()
Run the code above in your browser using DataLab