Extract quantities that can be used to diagnose sampling behavior of the algorithms applied by Stan at the back-end of brms.
# S3 method for brmsfit
log_posterior(object, ...)# S3 method for brmsfit
nuts_params(object, pars = NULL, ...)
# S3 method for brmsfit
rhat(object, pars = NULL, ...)
# S3 method for brmsfit
neff_ratio(object, pars = NULL, ...)
The exact form of the output depends on the method.
A brmsfit
object.
Arguments passed to individual methods.
An optional character vector of parameter names.
For nuts_params
these will be NUTS sampler parameter
names rather than model parameters. If pars is omitted
all parameters are included.
For more details see
bayesplot-extractors
.
if (FALSE) {
fit <- brm(time ~ age * sex, data = kidney)
lp <- log_posterior(fit)
head(lp)
np <- nuts_params(fit)
str(np)
# extract the number of divergence transitions
sum(subset(np, Parameter == "divergent__")$Value)
head(rhat(fit))
head(neff_ratio(fit))
}
Run the code above in your browser using DataLab