## S3 method for class 'felm':
tidy(x, conf.int = FALSE, conf.level = 0.95, fe = FALSE,
fe.error = fe, ...)## S3 method for class 'felm':
augment(x, data = NULL, ...)
## S3 method for class 'felm':
glance(x, ...)
conf.int=TRUE
tidy.felm
returns one row for each coefficient. If fe=TRUE
, it also includes rows for for fixed effects estimates.
There are five columns:
cont.int=TRUE
, it also includes columns for conf.low
and conf.high
, computed with confint
.augment.felm
returns one row for each observation, with multiple columns added to the original data:
glance.lm
returns a one-row data.frame with the columnsconf.int=TRUE
, the confidence interval is computedif (require("lfe", quietly = TRUE)) {
N=1e2
DT <- data.frame(
id = sample(5, N, TRUE),
v1 = sample(5, N, TRUE),
v2 = sample(1e6, N, TRUE),
v3 = sample(round(runif(100,max=100),4), N, TRUE),
v4 = sample(round(runif(100,max=100),4), N, TRUE)
)
result_felm <- felm(v2~v3, DT)
tidy(result_felm)
augment(result_felm)
result_felm <- felm(v2~v3|id+v1, DT)
tidy(result_felm, fe = TRUE)
augment(result_felm)
v1<-DT$v1
v2 <- DT$v2
v3 <- DT$v3
id <- DT$id
result_felm <- felm(v2~v3|id+v1)
tidy(result_felm)
augment(result_felm)
glance(result_felm)
}
Run the code above in your browser using DataLab