Learn R Programming

broom (version 0.4.0)

mcmc_tidiers: Tidying methods for MCMC (Stan, JAGS, etc.) fits

Description

Tidying methods for MCMC (Stan, JAGS, etc.) fits

Usage

tidyMCMC(x, pars, estimate.method = "mean", conf.int = FALSE,
  conf.level = 0.95, conf.method = "quantile", droppars = "lp__", ...)

## S3 method for class 'rjags': tidy(x, pars, estimate.method = "mean", conf.int = FALSE, conf.level = 0.95, conf.method = "quantile", ...)

## S3 method for class 'stanfit': tidy(x, pars, estimate.method = "mean", conf.int = FALSE, conf.level = 0.95, conf.method = "quantile", droppars = "lp__", ...)

Arguments

x
an object of class "stanfit"
pars
(character) specification of which parameters to nclude
estimate.method
method for computing point estimate ("mean" or median")
conf.int
(logical) include confidence interval?
conf.level
probability level for CI
conf.method
method for computing confidence intervals ("quantile" or "HPDinterval")
droppars
Parameters not to include in the output (such as log-probability information)
...
unused

Examples

Run this code
# Using example from "RStan Getting Started"
# https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

model_file <- system.file("extdata", "8schools.stan", package = "broom")

schools_dat <- list(J = 8,
                    y = c(28,  8, -3,  7, -1,  1, 18, 12),
                    sigma = c(15, 10, 16, 11,  9, 11, 10, 18))

if (requireNamespace("rstan", quietly = TRUE)) {
  set.seed(2015)
  rstan_example <- stan(file = model_file, data = schools_dat,
                        iter = 100, chains = 2)
}

if (requireNamespace("rstan", quietly = TRUE)) {
  # the object from the above code was saved as rstan_example.rda
  infile <- system.file("extdata", "rstan_example.rda", package = "broom")
  load(infile)

  tidy(rstan_example)
  tidy(rstan_example, conf.int = TRUE)

  td_mean <- tidy(rstan_example, conf.int = TRUE)
  td_median <- tidy(rstan_example, conf.int = TRUE, estimate.method = "median")

  library(dplyr)
  library(ggplot2)
  tds <- rbind(mutate(td_mean, method = "mean"),
               mutate(td_median, method = "median"))

  ggplot(tds, aes(estimate, term)) +
    geom_errorbarh(aes(xmin = conf.low, xmax = conf.high)) +
    geom_point(aes(color = method))
}

Run the code above in your browser using DataLab