These methods tidy the coefficients of ordinal logistic regression
models generated by ordinal::clm()
or ordinal::clmm()
of the ordinal
package, MASS::polr()
of the MASS
packge, or survey::svyolr()
of the survey
package.
# S3 method for polr
tidy(
x,
conf.int = FALSE,
conf.level = 0.95,
exponentiate = FALSE,
quick = FALSE,
...
)# S3 method for polr
glance(x, ...)
# S3 method for polr
augment(
x,
data = stats::model.frame(x),
newdata,
type.predict = c("probs", "class"),
...
)
# S3 method for clm
tidy(
x,
conf.int = FALSE,
conf.level = 0.95,
exponentiate = FALSE,
quick = FALSE,
conf.type = c("profile", "Wald"),
...
)
# S3 method for clmm
tidy(
x,
conf.int = FALSE,
conf.level = 0.95,
exponentiate = FALSE,
quick = FALSE,
conf.type = c("profile", "Wald"),
...
)
# S3 method for clm
glance(x, ...)
# S3 method for clmm
glance(x, ...)
# S3 method for clm
augment(
x,
data = stats::model.frame(x),
newdata,
type.predict = c("prob", "class"),
...
)
# S3 method for svyolr
tidy(
x,
conf.int = FALSE,
conf.level = 0.95,
exponentiate = FALSE,
quick = FALSE,
...
)
# S3 method for svyolr
glance(x, ...)
a model of class clm
, clmm
, polr
or svyolr
whether to include a confidence interval
confidence level of the interval, used only if
conf.int=TRUE
whether to exponentiate the coefficient estimates and confidence intervals (typical for ordinal logistic regression)
whether to compute a smaller and faster version, containing only the term, estimate and coefficient_type columns
extra arguments
original data, defaults to the extracting it from the model
if provided, performs predictions on the new data
type of prediction to compute for a CLM; passed on to
ordinal::predict.clm()
or predict.polr
the type of confidence interval
(see ordinal::confint.clm()
)
tidy.clm
, tidy.clmm
, tidy.polr
and tidy.svyolr
return one row for each coefficient at each level of the response variable,
with six columns:
term in the model
estimated coefficient
standard error
z-statistic
two-sided p-value
type of coefficient, see ordinal::clm()
If conf.int=TRUE, it also includes columns for conf.low and
glance.clm, glance.clmm, glance.polr and glance.svyolr return a one-row data.frame with the columns:
the effective degrees of freedom
the data's log-likelihood under the model
the Akaike Information Criterion
the Bayesian Information Criterion
residual degrees of freedom
augment.clm and augment.polr returns one row for each observation, with additional columns added to the original data:
fitted values of model
standard errors of fitted values
augment is not supportted for ordinal::clmm() and survey::svyolr() models.
All tidying methods return a data.frame without rownames. The structure depends on the method chosen.
# NOT RUN {
if (require(ordinal)){
clm_mod <- clm(rating ~ temp * contact, data = wine)
tidy(clm_mod)
tidy(clm_mod, conf.int = TRUE)
tidy(clm_mod, conf.int = TRUE, conf.type = "Wald", exponentiate = TRUE)
glance(clm_mod)
augment(clm_mod)
clm_mod2 <- clm(rating ~ temp, nominal = ~ contact, data = wine)
tidy(clm_mod2)
clmm_mod <- clmm(rating ~ temp + contact + (1 | judge), data = wine)
tidy(clmm_mod)
glance(clmm_mod)
}
if (require(MASS)) {
polr_mod <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
tidy(polr_mod, exponentiate = TRUE, conf.int = TRUE)
glance(polr_mod)
augment(polr_mod, type.predict = "class")
}
# }
Run the code above in your browser using DataLab