
intrinsic_phi0(phi0, x, y, S, T, a = 0.5, b = 0, c = 0.5, d = 0, beta_range = TRUE, tol = 1e-08, ...)
intrinsic_phi0_sims(phi0, x, y, S, T, a = 0.5, b = 0, c = 0.5, d = 0, nsims = 1e+06)
intrinsic_estimate(x, y, S, T, a = 0.5, b = 0, c = 0.5, d = 0, otol = 1e-08, ...)
intrinsic_H0(phi.star, alternative, x, y, S, T, a = 0.5, b = 0, c = 0.5, d = 0, ...)
intrinsic_bounds(x, y, S, T, a = 0.5, b = 0, c = 0.5, d = 0, conf = 0.95, parameter = "phi", otol = 1e-08, ...)
phi
TRUE
(default), an internal method is used to avoid a possible failure in numerical integration; see the main vignette for detailsintegrate
phi
phi0 < phi.star
,
"greater" for H1: phi0 > phi.star
"phi"
or vaccine efficacy "VE"
intrinsic_phi0
returns the posterior expected loss,
intrinsic_estimate
returns the intrinsic estimate,
intrinsic_H0
performs intrinsic hypothesis testing, and
intrinsic_bounds
returns the intrinsic credibility interval.
a<-0.5; b<-0; c<-1/2; d<-0; S<-100; T<-S; x<-0; y<-20
intrinsic_phi0(0.5, x, y, S, T, a, b, c, d)
intrinsic_phi0_sims(0.5, x, y, S, T, a, b, c, d)
intrinsic_estimate(x, y, S, T, a, b, c, d)
bounds <- intrinsic_bounds(x, y, S, T, a, b, c, d, conf=0.95); bounds
ppost_phi(bounds[2], a, b, c, d, S, T, x, y)- ppost_phi(bounds[1], a, b, c, d, S, T, x, y)
Run the code above in your browser using DataLab