An extension of jmv::cfa()
and lavaan::cfa()
.
CFA(
data,
model = "A =~ a[1:5]; B =~ b[c(1,3,5)]; C =~ c1 + c2 + c3",
highorder = "",
orthogonal = FALSE,
missing = "listwise",
style = "lavaan",
CI = FALSE,
MI = FALSE
)
Data frame.
Model formula. See examples.
High-order factor. Default is ""
.
Default is FALSE
. If TRUE
, all covariances among latent variables are set to zero, and only "lavaan" style will be output.
Default is "listwise"
. Alternative is "fiml"
(using "Full Information Maximum Likelihood" method to estimate the model).
"jmv"
, "lavaan"
(default), or both c("jmv", "lavaan")
.
If the model has high-order factors, only "lavaan" style will be output.
TRUE
or FALSE
(default), provide confidence intervals for the model estimates.
TRUE
or FALSE
(default), provide modification indices for the parameters not included in the model.
A list of results returned by jmv::cfa()
and lavaan::cfa()
.
# NOT RUN {
data.cfa=lavaan::HolzingerSwineford1939
CFA(data.cfa, "Visual =~ x[1:3]; Textual =~ x[c(4,5,6)]; Speed =~ x7 + x8 + x9")
CFA(data.cfa, model="
Visual =~ x[1:3]
Textual =~ x[c(4,5,6)]
Speed =~ x7 + x8 + x9
", highorder="Ability")
data.bfi=na.omit(psych::bfi)
CFA(data.bfi, "E =~ E[1:5]; A =~ A[1:5]; C =~ C[1:5]; N =~ N[1:5]; O =~ O[1:5]")
# }
Run the code above in your browser using DataLab