An extension of lavaan::cfa()
.
CFA(
data,
model = "A =~ a[1:5]; B =~ b[c(1,3,5)]; C =~ c1 + c2 + c3",
estimator = "ML",
highorder = "",
orthogonal = FALSE,
missing = "listwise",
digits = 3,
file = NULL
)
A list of results returned by lavaan::cfa()
.
Data frame.
Model formula. See examples.
The estimator to be used
(for details, see lavaan options).
Defaults to "ML"
.
Can be one of the following:
"ML"
Maximum Likelihood (can be extended to
"MLM"
, "MLMV"
, "MLMVS"
, "MLF"
, or "MLR"
for robust standard errors and robust test statistics)
"GLS"
Generalized Least Squares
"WLS"
Weighted Least Squares
"ULS"
Unweighted Least Squares
"DWLS"
Diagonally Weighted Least Squares
"DLS"
Distributionally-weighted Least Squares
High-order factor. Defaults to ""
.
Defaults to FALSE
. If TRUE
, all covariances among latent variables are set to zero.
Defaults to "listwise"
. Alternative is "fiml"
("Full Information Maximum Likelihood").
Number of decimal places of output. Defaults to 3
.
File name of MS Word (.doc
).
Alpha
, EFA
, lavaan_summary
data.cfa=lavaan::HolzingerSwineford1939
CFA(data.cfa, "Visual =~ x[1:3]; Textual =~ x[c(4,5,6)]; Speed =~ x7 + x8 + x9")
CFA(data.cfa, model="
Visual =~ x[1:3]
Textual =~ x[c(4,5,6)]
Speed =~ x7 + x8 + x9
", highorder="Ability")
data.bfi = na.omit(psych::bfi)
CFA(data.bfi, "E =~ E[1:5]; A =~ A[1:5]; C =~ C[1:5]; N =~ N[1:5]; O =~ O[1:5]")
Run the code above in your browser using DataLab