granger_causality: Granger causality test (multivariate).
Description
Granger test of predictive causality (between multivariate time series) based on vector autoregression model using vars::VAR(). Its output resembles the output of the vargranger command in Stata (but here using an \(F\) test).
Usage
granger_causality(
varmodel,
var.y = NULL,
var.x = NULL,
test = c("F", "Chisq"),
file = NULL,
check.dropped = FALSE
)Value
A data frame of results.
Arguments
- varmodel
VAR model fitted using vars::VAR().
- var.y, var.x
[Optional] Defaults to NULL (all variables). If specified, then perform tests for specific variables. Values can be a single variable (e.g., "X"), a vector of variables (e.g., c("X1", "X2")), or a string containing regular expression (e.g., "X1|X2").
- test
\(F\) test and/or Wald \(\chi^2\) test. Defaults to both: c("F", "Chisq").
- file
File name of MS Word (".doc").
- check.dropped
Check dropped variables. Defaults to FALSE.
Details
Granger causality test (based on VAR model) examines whether the lagged values of a predictor (or predictors) help to predict an outcome when controlling for the lagged values of the outcome itself. Granger causality does not represent a true causal effect.
See Also
ccf_plot()
granger_test()
Examples
Run this code# R package "vars" should be installed
library(vars)
data(Canada)
VARselect(Canada)
vm = VAR(Canada, p=3)
model_summary(vm)
granger_causality(vm)
Run the code above in your browser using DataLab