Learn R Programming

⚠️There's a newer version (0.5.0) of this package.Take me there.

brulee

The R brulee package contains several basic modeling functions that use the torch package infrastructure, such as:

Installation

You can install the released version of brulee from CRAN with:

install.packages("brulee")

And the development version from GitHub with:

# install.packages("pak")
pak::pak("tidymodels/brulee")

Example

brulee has formula, x/y, and recipe user interfaces for each function. For example:

library(brulee)
library(recipes)
library(yardstick)

data(bivariate, package = "modeldata")
set.seed(20)
nn_log_biv <- brulee_mlp(Class ~ log(A) + log(B), data = bivariate_train, 
                         epochs = 150, hidden_units = 3)

# We use the tidymodels semantics to always return a tibble when predicting
predict(nn_log_biv, bivariate_test, type = "prob") %>% 
  bind_cols(bivariate_test) %>% 
  roc_auc(Class, .pred_One)
#> # A tibble: 1 × 3
#>   .metric .estimator .estimate
#>   <chr>   <chr>          <dbl>
#> 1 roc_auc binary         0.837

A recipe can also be used if the data require some sort of preprocessing (e.g., indicator variables, transformations, or standardization):

library(recipes)

rec <- 
  recipe(Class ~ ., data = bivariate_train) %>%  
  step_YeoJohnson(all_numeric_predictors()) %>% 
  step_normalize(all_numeric_predictors())

set.seed(20)
nn_rec_biv <- brulee_mlp(rec, data = bivariate_train, 
                         epochs = 150, hidden_units = 3)

# A little better
predict(nn_rec_biv, bivariate_test, type = "prob") %>% 
  bind_cols(bivariate_test) %>% 
  roc_auc(Class, .pred_One)
#> # A tibble: 1 × 3
#>   .metric .estimator .estimate
#>   <chr>   <chr>          <dbl>
#> 1 roc_auc binary         0.866

Code of Conduct

Please note that the brulee project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Copy Link

Version

Install

install.packages('brulee')

Monthly Downloads

631

Version

0.4.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Max Kuhn

Last Published

January 30th, 2025

Functions in brulee (0.4.0)

brulee-autoplot

Plot model loss over epochs
brulee_multinomial_reg

Fit a multinomial regression model
brulee-package

brulee: High-Level Modeling Functions with 'torch'
brulee_linear_reg

Fit a linear regression model
brulee_mlp

Fit neural networks
matrix_to_dataset

Convert data to torch format
brulee_activations

Activation functions for neural networks in brulee
predict.brulee_linear_reg

Predict from a brulee_linear_reg
brulee_logistic_reg

Fit a logistic regression model
brulee-coefs

Extract Model Coefficients
schedule_decay_time

Change the learning rate over time
reexports

Objects exported from other packages
predict.brulee_logistic_reg

Predict from a brulee_logistic_reg
predict.brulee_mlp

Predict from a brulee_mlp
predict.brulee_multinomial_reg

Predict from a brulee_multinomial_reg