Learn R Programming

bssm (version 1.1.7-1)

predict.mcmc_output: Predictions for State Space Models

Description

Draw samples from the posterior predictive distribution for future time points given the posterior draws of hyperparameters \(\theta\) and latent state \(alpha_{n+1}\). Function can also be used to draw samples from the posterior predictive distribution \(p(\tilde y_1, \ldots, \tilde y_n | y_1,\ldots, y_n)\).

Usage

# S3 method for mcmc_output
predict(
  object,
  model,
  nsim,
  type = "response",
  future = TRUE,
  seed = sample(.Machine$integer.max, size = 1),
  ...
)

Arguments

object

Results object of class mcmc_output from run_mcmc

model

A bssm_model object.. Should have same structure and class as the original model which was used in run_mcmc, in order to plug the posterior samples of the model parameters to the right places. It is also possible to input the original model for obtaining predictions for past time points. In this case, set argument future to FALSE.

nsim

Positive integer defining number of samples to draw.

type

Type of predictions. Possible choices are "mean" "response", or "state" level.

future

Default is TRUE, in which case predictions are for the future, using posterior samples of (theta, alpha_T+1) i.e. the posterior samples of hyperparameters and latest states. Otherwise it is assumed that model corresponds to the original model.

seed

Seed for RNG (positive integer). Note that this affects only the C++ side, and predict also uses R side RNG for subsampling, so for replicable results you should call set.seed before predict.

...

Ignored.

Value

A data.frame consisting of samples from the predictive posterior distribution.

Examples

Run this code
# NOT RUN {
library("graphics")
y <- log10(JohnsonJohnson)
prior <- uniform(0.01, 0, 1)
model <- bsm_lg(window(y, end = c(1974, 4)), sd_y = prior,
  sd_level = prior, sd_slope = prior, sd_seasonal = prior)

mcmc_results <- run_mcmc(model, iter = 5000)
future_model <- model
future_model$y <- ts(rep(NA, 25), 
  start = tsp(model$y)[2] + 2 * deltat(model$y), 
  frequency = frequency(model$y))
# use "state" for illustrative purposes, we could use type = "mean" directly
pred <- predict(mcmc_results, future_model, type = "state", 
  nsim = 1000)

library("dplyr")
sumr_fit <- as.data.frame(mcmc_results, variable = "states") %>%
  group_by(time, iter) %>% 
  mutate(signal = 
      value[variable == "level"] + 
      value[variable == "seasonal_1"]) %>%
  group_by(time) %>%
  summarise(mean = mean(signal), 
    lwr = quantile(signal, 0.025), 
    upr = quantile(signal, 0.975))

sumr_pred <- pred %>% 
  group_by(time, sample) %>%
  mutate(signal = 
      value[variable == "level"] + 
      value[variable == "seasonal_1"]) %>%
  group_by(time) %>%
  summarise(mean = mean(signal),
    lwr = quantile(signal, 0.025), 
    upr = quantile(signal, 0.975)) 
    
# If we used type = "mean", we could do
# sumr_pred <- pred %>% 
#   group_by(time) %>%
#   summarise(mean = mean(value),
#     lwr = quantile(value, 0.025), 
#     upr = quantile(value, 0.975)) 
    
library("ggplot2")
rbind(sumr_fit, sumr_pred) %>% 
  ggplot(aes(x = time, y = mean)) + 
  geom_ribbon(aes(ymin = lwr, ymax = upr), 
   fill = "#92f0a8", alpha = 0.25) +
  geom_line(colour = "#92f0a8") +
  theme_bw() + 
  geom_point(data = data.frame(
    mean = log10(JohnsonJohnson), 
    time = time(JohnsonJohnson)))

# Posterior predictions for past observations:
yrep <- predict(mcmc_results, model, type = "response", 
  future = FALSE, nsim = 1000)
meanrep <- predict(mcmc_results, model, type = "mean", 
  future = FALSE, nsim = 1000)
  
sumr_yrep <- yrep %>% 
  group_by(time) %>%
  summarise(earnings = mean(value),
    lwr = quantile(value, 0.025), 
    upr = quantile(value, 0.975)) %>%
  mutate(interval = "Observations")

sumr_meanrep <- meanrep %>% 
  group_by(time) %>%
  summarise(earnings = mean(value),
    lwr = quantile(value, 0.025), 
    upr = quantile(value, 0.975)) %>%
  mutate(interval = "Mean")
    
rbind(sumr_meanrep, sumr_yrep) %>% 
  mutate(interval = factor(interval, levels = c("Observations", "Mean"))) %>%
  ggplot(aes(x = time, y = earnings)) + 
  geom_ribbon(aes(ymin = lwr, ymax = upr, fill = interval), 
   alpha = 0.75) +
  theme_bw() + 
  geom_point(data = data.frame(
    earnings = model$y, 
    time = time(model$y)))    


# }

Run the code above in your browser using DataLab