mhingebst(x, y, cost = NULL, family = c("hinge"), ctrl = bst_control(),
control.tree = list(fixed.depth=TRUE, n.term.node=6, maxdepth = 1),
learner = c("ls", "sm", "tree"))
"print"(x, ...)
"predict"(object, newdata=NULL, newy=NULL, mstop=NULL,
type=c("response", "class", "loss", "error"), ...)
"fpartial"(object, mstop=NULL, newdata=NULL)y must be in {1, -1} for family = "hinge".family = "hinge" for multi-class hinge loss. bst_control.ls linear models,
sm smoothing splines,
tree regression trees.
predict a character indicating whether the response, classes, loss or classification errors should be predicted in case of hingemhingebst. x. Zhu Wang (2012), Multi-class HingeBoost: Method and Application to the Classification of Cancer Types Using Gene Expression Data. Methods of Information in Medicine, 51(2), 162--7.
cv.mhingebst for cross-validated stopping iteration. Furthermore see
bst_control## Not run:
# dat <- ex1data(100, p=5)
# res <- mhingebst(x=dat$x, y=dat$y)
# ## End(Not run)
Run the code above in your browser using DataLab