msvm(x, y, cost = NULL, family = c("hinge"), ctrl = bst_control(),
control.tree = list(fixed.depth=TRUE, n.term.node=6, maxdepth = 1), learner = c("ls", "sm", "tree"))
## S3 method for class 'msvm':
print(x, ...)
## S3 method for class 'msvm':
predict(object, newdata=NULL, newy=NULL, mstop=NULL, type=c("response", "class", "loss", "error"), ...)
## S3 method for class 'msvm':
fpartial(object, mstop=NULL, newdata=NULL)
y
must be in {1, -1} for family
= "hinge".family
= "hinge" for multi-class hinge loss.bst_control
.ls
linear models,
sm
smoothing splines,
tree
regression trees.predict
a character indicating whether the response, classes, loss or classification errors should be predicted in case of hinge
msvm
.x
.Zhu Wang (2011), Multi-class HingeBoost: Method and Application to the Classification of Cancer Types Using Gene Expression Data. Manuscript.
cv.msvm
for cross-validated stopping iteration. Furthermore see
bst_control
dat <- ex1data(200)
res <- msvm(x=dat$x, y=dat$y)
Run the code above in your browser using DataLab