msvm(x, y, cost = NULL, family = c("hinge"), ctrl = bst_control(),
control.tree = list(fixed.depth=TRUE, n.term.node=6, maxdepth = 1), learner = c("ls", "sm", "tree"))
## S3 method for class 'msvm':
print(x, ...)
## S3 method for class 'msvm':
predict(object, newdata=NULL, newy=NULL, mstop=NULL, type=c("response", "class", "loss", "error"), ...)
## S3 method for class 'msvm':
fpartial(object, mstop=NULL, newdata=NULL)y must be in {1, -1} for family = "hinge".family = "hinge" for multi-class hinge loss.bst_control.ls linear models,
sm smoothing splines,
tree regression trees.predict a character indicating whether the response, classes, loss or classification errors should be predicted in case of hingemsvm.x.Zhu Wang (2011), Multi-class HingeBoost: Method and Application to the Classification of Cancer Types Using Gene Expression Data. Manuscript.
cv.msvm for cross-validated stopping iteration. Furthermore see
bst_controldat <- ex1data(200)
res <- msvm(x=dat$x, y=dat$y)Run the code above in your browser using DataLab