The class BSVART presents complete specification for the BSVAR model with t-distributed structural shocks.
bsvars::BSVAR -> BSVART
pa non-negative integer specifying the autoregressive lag order of the model.
identificationan object IdentificationBSVARs with the identifying restrictions.
prioran object PriorBSVART with the prior specification.
data_matricesan object DataMatricesBSVAR with the data matrices.
starting_valuesan object StartingValuesBSVART with the starting values.
adaptiveMHa vector of two values setting the Robust Adaptive Metropolis sampler for df: target acceptance rate and adaptive rate.
new()Create a new specification of the BSVAR model with t-distributed structural shocks, BSVART.
specify_bsvar_t$new(
data,
p = 1L,
B,
exogenous = NULL,
stationary = rep(FALSE, ncol(data))
)dataa (T+p)xN matrix with time series data.
pa positive integer providing model's autoregressive lag order.
Ba logical NxN matrix containing value TRUE for the
elements of the structural matrix \(B\) to be estimated and value
FALSE for exclusion restrictions to be set to zero.
exogenousa (T+p)xd matrix of exogenous variables.
stationaryan N logical vector - its element set to
FALSE sets the prior mean for the autoregressive parameters of the
Nth equation to the white noise process, otherwise to random walk.
A new complete specification for the bsvar model with t-distributed structural shocks, BSVART.
clone()The objects of this class are cloneable with this method.
specify_bsvar_t$clone(deep = FALSE)deepWhether to make a deep clone.
estimate, specify_posterior_bsvar_t
data(us_fiscal_lsuw)
spec = specify_bsvar_t$new(
data = us_fiscal_lsuw,
p = 4
)
Run the code above in your browser using DataLab