The class PriorBSVARMIX presents a prior specification for the bsvar model with a zero-mean mixture of normals model for structural shocks.
bsvars::PriorBSVAR
-> bsvars::PriorBSVARMSH
-> PriorBSVARMIX
A
an NxK
matrix, the mean of the normal prior distribution for the parameter matrix \(A\).
A_V_inv
a KxK
precision matrix of the normal prior distribution for each of the row of the parameter matrix \(A\). This precision matrix is equation invariant.
B_V_inv
an NxN
precision matrix of the generalised-normal prior distribution for the structural matrix \(B\). This precision matrix is equation invariant.
B_nu
a positive integer greater of equal than N
, a shape parameter of the generalised-normal prior distribution for the structural matrix \(B\).
hyper_nu_B
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix \(B\).
hyper_a_B
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix \(B\).
hyper_s_BB
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix \(B\).
hyper_nu_BB
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix \(B\).
hyper_nu_A
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the overall shrinkage parameter for matrix \(A\).
hyper_a_A
a positive scalar, the shape parameter of the gamma prior for the second-level hierarchy for the overall shrinkage parameter for matrix \(A\).
hyper_s_AA
a positive scalar, the scale parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix \(A\).
hyper_nu_AA
a positive scalar, the shape parameter of the inverted-gamma 2 prior for the third-level of hierarchy for overall shrinkage parameter for matrix \(A\).
sigma_nu
a positive scalar, the shape parameter of the inverted-gamma 2 for mixture component-dependent variances of the structural shocks, \(\sigma^2_{n.s_t}\).
sigma_s
a positive scalar, the scale parameter of the inverted-gamma 2 for mixture component-dependent variances of the structural shocks, \(\sigma^2_{n.s_t}\).
PR_TR
an MxM
matrix, the matrix of hyper-parameters of the row-specific Dirichlet prior distribution for the state probabilities the Markov process \(s_t\). Its rows must be identical.
prior = specify_prior_bsvar_mix$new(N = 3, p = 1, M = 2) # specify the prior
prior$A # show autoregressive prior mean
Run the code above in your browser using DataLab