Learn R Programming

bsvars (version 3.1)

summary.SDDRidMSH: Provides summary of verifying homoskedasticity

Description

Provides summary of the Savage-Dickey density ratios for verification of structural shocks homoskedasticity. The outcomes can be used to make probabilistic statements about identification through heteroskedasticity closely following ideas by Lütkepohl& Woźniak (2020).

Usage

# S3 method for SDDRidMSH
summary(object, ...)

Value

A table reporting the logarithm of Bayes factors of homoskedastic to heteroskedastic posterior odds "log(SDDR)" for each structural shock, their numerical standard errors "NSE", and the implied posterior probability of the homoskedasticity and heteroskedasticity hypothesis, "Pr[homoskedasticity|data]" and "Pr[heteroskedasticity|data]"

respectively.

Arguments

object

an object of class SDDRidMSH obtained using the verify_identification.PosteriorBSVARMSH function.

...

additional arguments affecting the summary produced.

Author

Tomasz Woźniak wozniak.tom@pm.me

References

Lütkepohl, H., and Woźniak, T., (2020) Bayesian Inference for Structural Vector Autoregressions Identified by Markov-Switching Heteroskedasticity. Journal of Economic Dynamics and Control 113, 103862, tools:::Rd_expr_doi("10.1016/j.jedc.2020.103862").

See Also

verify_identification.PosteriorBSVARMSH

Examples

Run this code
# upload data
data(us_fiscal_lsuw)

# specify the model and set seed
specification  = specify_bsvar_msh$new(us_fiscal_lsuw, M = 2)
set.seed(123)

# estimate the model
posterior      = estimate(specification, 10)

# verify heteroskedasticity
sddr           = verify_identification(posterior)
summary(sddr)

# workflow with the pipe |>
############################################################
set.seed(123)
us_fiscal_lsuw |>
  specify_bsvar_msh$new(M = 2) |>
  estimate(S = 10) |> 
  verify_identification() |> 
  summary() -> sddr_summary

Run the code above in your browser using DataLab