# Load libraries
library(parsnip)
library(rsample)
library(rpart)
# Load data
set.seed(1234)
split <- initial_split(kyphosis, prop = 9/10)
spine_train <- training(split)
# Create model and fit
c5_fit <- decision_tree(mode = "classification") %>%
set_engine("C5.0") %>%
fit(Kyphosis ~ ., data = spine_train)
out <- butcher(c5_fit, verbose = TRUE)
# Try another model from parsnip
c5_fit2 <- boost_tree(mode = "classification", trees = 100) %>%
set_engine("C5.0") %>%
fit(Kyphosis ~ ., data = spine_train)
out <- butcher(c5_fit2, verbose = TRUE)
# Create model object from original library
library(C50)
library(modeldata)
data(mlc_churn)
c5_fit3 <- C5.0(x = mlc_churn[, -20], y = mlc_churn$churn)
out <- butcher(c5_fit3, verbose = TRUE)
Run the code above in your browser using DataLab