Learn R Programming

butcher (version 0.3.5)

axe-pls: Axing mixOmics models

Description

mixo_pls (via pls()), mixo_spls (via spls()), and mixo_plsda (via plsda()) objects are created with the mixOmics package, leveraged to fit partial least squares models.

Usage

# S3 method for mixo_pls
axe_call(x, verbose = FALSE, ...)

# S3 method for mixo_spls axe_call(x, verbose = FALSE, ...)

# S3 method for mixo_pls axe_data(x, verbose = FALSE, ...)

# S3 method for mixo_spls axe_data(x, verbose = FALSE, ...)

# S3 method for mixo_pls axe_fitted(x, verbose = FALSE, ...)

# S3 method for mixo_spls axe_fitted(x, verbose = FALSE, ...)

Value

Axed mixo_pls, mixo_spls, or mixo_plsda object.

Arguments

x

A model object.

verbose

Print information each time an axe method is executed. Notes how much memory is released and what functions are disabled. Default is FALSE.

...

Any additional arguments related to axing.

Details

The mixOmics package is not available on CRAN, but can be installed from the Bioconductor repository via remotes::install_bioc("mixOmics").

Examples

Run this code
if (FALSE) { # rlang::is_installed("mixOmics") && !butcher:::is_cran_check()
library(butcher)
do.call(library, list(package = "mixOmics"))

# pls ------------------------------------------------------------------
fit_mod <- function() {
  boop <- runif(1e6)
  pls(matrix(rnorm(2e4), ncol = 2), rnorm(1e4), mode = "classic")
}

mod_fit <- fit_mod()
mod_res <- butcher(mod_fit)

weigh(mod_fit)
weigh(mod_res)

new_data <- matrix(1:2, ncol = 2)
colnames(new_data) <- c("X1", "X2")
predict(mod_fit, new_data)
predict(mod_res, new_data)
}

Run the code above in your browser using DataLab