# Load libraries
library(parsnip)
library(rsample)
library(randomForest)
data(kyphosis, package = "rpart")
# Load data
set.seed(1234)
split <- initial_split(kyphosis, prop = 9/10)
spine_train <- training(split)
# Create model and fit
randomForest_fit <- rand_forest(mode = "classification",
mtry = 2,
trees = 2,
min_n = 3) %>%
set_engine("randomForest") %>%
fit_xy(x = spine_train[,2:4], y = spine_train$Kyphosis)
out <- butcher(randomForest_fit, verbose = TRUE)
# Another randomForest object
wrapped_rf <- function() {
some_junk_in_environment <- runif(1e6)
randomForest_fit <- randomForest(mpg ~ ., data = mtcars)
return(randomForest_fit)
}
# Remove junk
cleaned_rf <- axe_env(wrapped_rf(), verbose = TRUE)
# Check size
lobstr::obj_size(cleaned_rf)
Run the code above in your browser using DataLab