if (FALSE) { # rlang::is_installed(c("parsnip", "rsample", "ranger"))
# Load libraries
library(parsnip)
library(rsample)
library(ranger)
# Load data
set.seed(1234)
split <- initial_split(iris, prop = 9/10)
iris_train <- training(split)
# Create model and fit
ranger_fit <- rand_forest(mode = "classification",
mtry = 2,
trees = 20,
min_n = 3) %>%
set_engine("ranger") %>%
fit(Species ~ ., data = iris_train)
out <- butcher(ranger_fit, verbose = TRUE)
# Another ranger object
wrapped_ranger <- function() {
n <- 100
p <- 400
dat <- data.frame(y = factor(rbinom(n, 1, .5)), replicate(p, runif(n)))
fit <- ranger(y ~ ., dat, importance = "impurity_corrected")
return(fit)
}
cleaned_ranger <- axe_fitted(wrapped_ranger(), verbose = TRUE)
}
Run the code above in your browser using DataLab