library(recipes)
data(biomass, package = "modeldata")
biomass_tr <- biomass[biomass$dataset == "Training",]
rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors()) %>%
step_spatialsign(all_predictors())
out <- butcher(rec, verbose = TRUE)
# Another recipe object
wrapped_recipes <- function() {
some_junk_in_environment <- runif(1e6)
return(
recipe(mpg ~ cyl, data = mtcars) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors()) %>%
prep()
)
}
# Remove junk in environment
cleaned1 <- axe_env(wrapped_recipes(), verbose = TRUE)
# Replace prepared training data with zero-row slice
cleaned2 <- axe_fitted(wrapped_recipes(), verbose = TRUE)
# Check size
lobstr::obj_size(cleaned1)
lobstr::obj_size(cleaned2)
Run the code above in your browser using DataLab