thin

0th

Percentile

Thinning Posterior Draws

Thins the MCMC posterior draws in an object of class "bvar" or "bvec".

Usage
thin(object, thin = 5)
Arguments
object

an object of class "bvar" or "bvec".

thin

an integer specifying the thinning interval between successive values of posterior draws.

Value

An object of class "bvar" or "bvec".

Aliases
  • thin
Examples
# NOT RUN {
data("e6")
data <- gen_vec(e6, p = 4, const = "unrestricted", season = "unrestricted")

y <- data$Y
w <- data$W
x <- data$X

# Reset random number generator for reproducibility
set.seed(1234567)

iter <- 500 # Number of iterations of the Gibbs sampler
# Chosen number of iterations should be much higher, e.g. 30000.

burnin <- 100 # Number of burn-in draws
store <- iter - burnin

r <- 1 # Set rank

t <- ncol(y) # Number of observations
k <- nrow(y) # Number of endogenous variables
k_w <- nrow(w) # Number of regressors in error correction term
k_x <- nrow(x) # Number of differenced regressors and unrestrictec deterministic terms

k_alpha <- k * r # Number of elements in alpha
k_beta <- k_w * r # Number of elements in beta
k_gamma <- k * k_x

# Set uninformative priors
a_mu_prior <- matrix(0, k_x * k) # Vector of prior parameter means
a_v_i_prior <- diag(0, k_x * k) # Inverse of the prior covariance matrix

v_i <- 0
p_tau_i <- diag(1, k_w)

u_sigma_df_prior <- r # Prior degrees of freedom
u_sigma_scale_prior <- diag(0, k) # Prior covariance matrix
u_sigma_df_post <- t + u_sigma_df_prior # Posterior degrees of freedom

# Initial values
beta <- matrix(c(1, -4), k_w, r)

u_sigma_i <- diag(.0001, k)
u_sigma <- solve(u_sigma_i)

g_i <- u_sigma_i

# Data containers
draws_alpha <- matrix(NA, k_alpha, store)
draws_beta <- matrix(NA, k_beta, store)
draws_pi <- matrix(NA, k * k_w, store)
draws_gamma <- matrix(NA, k_gamma, store)
draws_sigma <- matrix(NA, k^2, store)

# Start Gibbs sampler
for (draw in 1:iter) {
  # Draw conditional mean parameters
  temp <- post_coint_kls(y = y, beta = beta, w = w, x = x, sigma_i = u_sigma_i,
                         v_i = v_i, p_tau_i = p_tau_i, g_i = g_i,
                         gamma_mu_prior = a_mu_prior,
                         gamma_V_i_prior = a_v_i_prior)
  alpha <- temp$alpha
  beta <- temp$beta
  Pi <- temp$Pi
  gamma <- temp$Gamma
  
  # Draw variance-covariance matrix
  u <- y - Pi %*% w - matrix(gamma, k) %*% x
  u_sigma_scale_post <- solve(tcrossprod(u) +
     v_i * alpha %*% tcrossprod(crossprod(beta, p_tau_i) %*% beta, alpha))
  u_sigma_i <- matrix(rWishart(1, u_sigma_df_post, u_sigma_scale_post)[,, 1], k)
  u_sigma <- solve(u_sigma_i)
  
  # Update g_i
  g_i <- u_sigma_i
  
  # Store draws
  if (draw > burnin) {
    draws_alpha[, draw - burnin] <- alpha
    draws_beta[, draw - burnin] <- beta
    draws_pi[, draw - burnin] <- Pi
    draws_gamma[, draw - burnin] <- gamma
    draws_sigma[, draw - burnin] <- u_sigma
  }
}

# Number of non-deterministic coefficients
k_nondet <- (k_x - 4) * k

# Generate bvec object
bvec_est <- bvec(y = y, w = w, x = x,
                 Pi = draws_pi,
                 Gamma = draws_gamma[1:k_nondet,],
                 C = draws_gamma[(k_nondet + 1):nrow(draws_gamma),],
                 Sigma = draws_sigma)

# Thin posterior draws
bvec_est <- thin(bvec_est, thin = 4)

# }
Documentation reproduced from package bvartools, version 0.0.1, License: GPL (>= 2)

Community examples

Looks like there are no examples yet.