# NOT RUN {
# Load data
data("e1")
data <- diff(log(e1))
# Generate model data
temp <- gen_var(data, p = 2, deterministic = "const")
y <- t(temp$data$Y)
x <- t(temp$data$Z)
k <- nrow(y)
tt <- ncol(y)
m <- k * nrow(x)
# Obtain SSVS priors using the semiautomatic approach
priors <- ssvs_prior(temp, semiautomatic = c(0.1, 10))
tau0 <- priors$tau0
tau1 <- priors$tau1
# Prior for inclusion parameter
prob_prior <- matrix(0.5, m)
# Priors
a_mu_prior <- matrix(0, m)
a_v_i_prior <- diag(c(tau1^2), m)
# Initial value of Sigma
sigma_i <- solve(tcrossprod(y) / tt)
# Draw parameters
a <- post_normal(y = y, x = x, sigma_i = sigma_i,
a_prior = a_mu_prior, v_i_prior = a_v_i_prior)
# Run SSVS
lambda <- ssvs(a = a, tau0 = tau0, tau1 = tau1,
prob_prior = prob_prior)
# }
Run the code above in your browser using DataLab