bvar_horseshoe(
y,
p,
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter/2),
thinning = 1,
bayes_spec = set_horseshoe(),
include_mean = TRUE,
minnesota = FALSE,
algo = c("block", "gibbs"),
verbose = FALSE,
num_thread = 1
)# S3 method for bvarhs
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for bvarhs
knit_print(x, ...)
bvar_horseshoe
returns an object named bvarhs
class. It is a list with the following components:
Posterior mean of VAR coefficients.
Posterior mean of covariance matrix
Posterior mean of precision matrix \(\Psi\)
Posterior inclusion probabilities.
posterior::draws_df with every variable: alpha, lambda, tau, omega, and eta
Name of every parameter.
Numer of Coefficients: mp + 1
or mp
Lag of VAR
Dimension of the data
Sample size used when training = totobs
- p
Total number of the observation
Matched call
Description of the model, e.g. VAR_Horseshoe
include constant term (const
) or not (none
)
Usual Gibbs sampling (gibbs
) or fast sampling (fast
)
Horseshoe specification defined by set_horseshoe()
The numer of chains
Total iterations
Burn-in
Thinning
Indicators for group.
Number of groups.
\(Y_0\)
\(X_0\)
Raw input
Time series data of which columns indicate the variables
VAR lag
Number of MCMC chains
MCMC iteration number
Number of burn-in (warm-up). Half of the iteration is the default choice.
Thinning every thinning-th iteration
Horseshoe initialization specification by set_horseshoe()
.
Add constant term (Default: TRUE
) or not (FALSE
)
Minnesota type
Ordinary gibbs sampling (gibbs
) or blocked gibbs (Default: block
).
Print the progress bar in the console. By default, FALSE
.
bvarhs
object
digit option to print
not used
Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465-480.
Makalic, E., & Schmidt, D. F. (2016). A Simple Sampler for the Horseshoe Estimator. IEEE Signal Processing Letters, 23(1), 179-182.