This function chooses \((\tau_{0i}, \tau_{1i})\) and \((\kappa_{0i}, \kappa_{1i})\)
using a default semiautomatic approach.
choose_ssvs(
y,
ord,
type = c("VAR", "VHAR"),
param = c(0.1, 10),
include_mean = TRUE,
gamma_param = c(0.01, 0.01),
mean_non = 0,
sd_non = 0.1
)
ssvsinput
object
Time series data of which columns indicate the variables.
Order for VAR or VHAR.
Model type (Default: VAR
or VHAR
).
Preselected constants \(c_0 << c_1\). By default, 0.1
and 10
(See Details).
Add constant term (Default: TRUE
) or not (FALSE
).
Parameters (shape, rate) for Gamma distribution. This is for the output.
Prior mean of unrestricted coefficients. This is for the output.
Standard deviance of unrestricted coefficients. This is for the output.
Instead of using subjective values of \((\tau_{0i}, \tau_{1i})\), we can use $$\tau_{ki} = c_k \hat{VAR(OLS)}$$ It must be \(c_0 << c_1\).
In case of \((\omega_{0ij}, \omega_{1ij})\), $$\omega_{kij} = c_k = \hat{VAR(OLS)}$$ similarly.
George, E. I., & McCulloch, R. E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88(423), 881-889.
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580.
Koop, G., & Korobilis, D. (2009). Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends® in Econometrics, 3(4), 267-358.