Set initial parameters before starting Gibbs sampler for SSVS.
init_ssvs(
init_coef,
init_coef_dummy,
init_chol,
init_chol_dummy,
type = c("user", "auto")
)# S3 method for ssvsinit
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.ssvsinit(x)
# S3 method for ssvsinit
knit_print(x, ...)
ssvsinit
object
Initial coefficient matrix. Initialize with an array or list for multiple chains.
Initial indicator matrix (1-0) corresponding to each component of coefficient. Initialize with an array or list for multiple chains.
Initial cholesky factor (upper triangular). Initialize with an array or list for multiple chains.
Initial indicator matrix (1-0) corresponding to each component of cholesky factor. Initialize with an array or list for multiple chains.
Type to choose initial values. One of
user
(User-given) and auto
(OLS for coefficients and 1 for dummy).
ssvsinit
digit option to print
not used
Set SSVS initialization for the VAR model.
init_coef
: (kp + 1) x m \(A\) coefficient matrix.
init_coef_dummy
: kp x m \(\Gamma\) dummy matrix to restrict the coefficients.
init_chol
: k x k \(\Psi\) upper triangular cholesky factor, which \(\Psi \Psi^\intercal = \Sigma_e^{-1}\).
init_chol_dummy
: k x k \(\Omega\) upper triangular dummy matrix to restrict the cholesky factor.
Denote that init_chol
and init_chol_dummy
should be upper_triangular or the function gives error.
For parallel chain initialization, assign three-dimensional array or three-length list.
George, E. I., & McCulloch, R. E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88(423), 881-889.
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580.
Koop, G., & Korobilis, D. (2009). Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends® in Econometrics, 3(4), 267-358.