sim_ssvs_var(
bayes_spec,
p,
dim_data = NULL,
include_mean = TRUE,
minnesota = FALSE,
mn_prob = 1,
method = c("eigen", "chol")
)sim_ssvs_vhar(
bayes_spec,
har = c(5, 22),
dim_data = NULL,
include_mean = TRUE,
minnesota = c("no", "short", "longrun"),
mn_prob = 1,
method = c("eigen", "chol")
)
List including coefficients.
A SSVS model specification by set_ssvs()
.
VAR lag
Specify the dimension of the data if hyperparameters of bayes_spec
have constant values.
Add constant term (Default: TRUE
) or not (FALSE
)
Only use off-diagonal terms of each coefficient matrices for restriction.
In sim_ssvs_var()
function, use TRUE
or FALSE
(default).
In sim_ssvs_vhar()
function, no
(default), short
type, or longrun
type.
Probability for own-lags.
Method to compute \(\Sigma^{1/2}\).
Numeric vector for weekly and monthly order. By default, c(5, 22)
.
Let \(\alpha\) be the vectorized coefficient of VAR(p). $$(\alpha \mid \gamma)$$ $$(\gamma_i)$$ $$(\eta_j \mid \omega_j)$$ $$(\omega_{ij})$$ $$(\psi_{ii}^2)$$
Let \(\phi\) be the vectorized coefficient of VHAR. $$(\phi \mid \gamma)$$ $$(\gamma_i)$$ $$(\eta_j \mid \omega_j)$$ $$(\omega_{ij})$$ $$(\psi_{ii}^2)$$
George, E. I., & McCulloch, R. E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88(423), 881-889.
George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142(1), 553-580.
Ghosh, S., Khare, K., & Michailidis, G. (2018). High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114(526).
Koop, G., & Korobilis, D. (2009). Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends® in Econometrics, 3(4), 267-358.