Tools to model and forecast multivariate time series including Bayesian Vector heterogeneous autoregressive (VHAR) model by Kim & Baek (2023) (tools:::Rd_expr_doi("10.1080/00949655.2023.2281644")). 'bvhar' can model Vector Autoregressive (VAR), VHAR, Bayesian VAR (BVAR), and Bayesian VHAR (BVHAR) models.
Maintainer: Young Geun Kim ygeunkimstat@gmail.com (ORCID) [copyright holder]
Other contributors:
Changryong Baek [contributor]
The bvhar package provides function to analyze and forecast multivariate time series data via vector autoregressive modeling. Here, vector autoregressive modelling includes:
Vector autoregressive (VAR) model: var_lm()
Vector heterogeneous autoregressive (VHAR) model: vhar_lm()
Bayesian VAR (BVAR) model: var_bayes()
Bayesian VHAR (BVHAR) model: vhar_bayes()
Kim, Y. G., and Baek, C. (2024). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.
Kim, Y. G., and Baek, C. (n.d.). Working paper.
Useful links: