This function fits BVHAR with Minnesota prior.
bvhar_minnesota(
y,
har = c(5, 22),
num_chains = 1,
num_iter = 1000,
num_burn = floor(num_iter/2),
thinning = 1,
bayes_spec = set_bvhar(),
scale_variance = 0.05,
include_mean = TRUE,
parallel = list(),
verbose = FALSE,
num_thread = 1
)# S3 method for bvharmn
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for bvharhm
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for bvharmn
logLik(object, ...)
# S3 method for bvharmn
AIC(object, ...)
# S3 method for bvharmn
BIC(object, ...)
is.bvharmn(x)
# S3 method for bvharmn
knit_print(x, ...)
# S3 method for bvharhm
knit_print(x, ...)
bvhar_minnesota()
returns an object bvharmn
class. It is a list with the following components:
Posterior Mean
Fitted values
Residuals
Posterior mean matrix of Matrix Normal distribution
Posterior precision matrix of Matrix Normal distribution
Posterior scale matrix of posterior inverse-wishart distribution
Posterior shape of inverse-Wishart distribution (\(\nu_0\) - obs + 2). \(\nu_0\): nrow(Dummy observation) - k
Numer of Coefficients: 3m + 1 or 3m
Dimension of the time series
Sample size used when training = totobs
- 22
Prior mean matrix of Matrix Normal distribution: \(M_0\)
Prior precision matrix of Matrix Normal distribution: \(\Omega_0^{-1}\)
Prior scale matrix of inverse-Wishart distribution: \(\Psi_0\)
Prior shape of inverse-Wishart distribution: \(\nu_0\)
\(Y_0\)
\(X_0\)
3, this element exists to run the other functions
Order for weekly term
Order for monthly term
Total number of the observation
include constant term (const
) or not (none
)
VHAR linear transformation matrix: \(C_{HAR}\)
Raw input (matrix
)
Matched call
Process string in the bayes_spec
: BVHAR_MN_VAR
(BVHAR-S) or BVHAR_MN_VHAR
(BVHAR-L)
Model specification (bvharspec
)
It is also normaliw
and bvharmod
class.
Time series data of which columns indicate the variables
Numeric vector for weekly and monthly order. By default, c(5, 22)
.
Number of MCMC chains
MCMC iteration number
Number of burn-in (warm-up). Half of the iteration is the default choice.
Thinning every thinning-th iteration
A BVHAR model specification by set_bvhar()
(default) or set_weight_bvhar()
.
Proposal distribution scaling constant to adjust an acceptance rate
Add constant term (Default: TRUE
) or not (FALSE
)
List the same argument of optimParallel::optimParallel()
. By default, this is empty, and the function does not execute parallel computation.
Print the progress bar in the console. By default, FALSE
.
Number of threads
Any object
digit option to print
not used
A bvharmn
object
Apply Minnesota prior to Vector HAR: \(\Phi\) (VHAR matrices) and \(\Sigma_e\) (residual covariance).
$$\Phi \mid \Sigma_e \sim MN(M_0, \Omega_0, \Sigma_e)$$ $$\Sigma_e \sim IW(\Psi_0, \nu_0)$$ (MN: matrix normal, IW: inverse-wishart)
There are two types of Minnesota priors for BVHAR:
VAR-type Minnesota prior specified by set_bvhar()
, so-called BVHAR-S model.
VHAR-type Minnesota prior specified by set_weight_bvhar()
, so-called BVHAR-L model.
Kim, Y. G., and Baek, C. (2024). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.
set_bvhar()
to specify the hyperparameters of BVHAR-S
set_weight_bvhar()
to specify the hyperparameters of BVHAR-L
summary.normaliw()
to summarize BVHAR model
# Perform the function using etf_vix dataset
fit <- bvhar_minnesota(y = etf_vix[,1:3])
class(fit)
# Extract coef, fitted values, and residuals
coef(fit)
head(residuals(fit))
head(fitted(fit))
Run the code above in your browser using DataLab