This function chooses the set of hyperparameters of Bayesian model using
stats::optim()
function.
choose_bayes(
bayes_bound = bound_bvhar(),
...,
eps = 1e-04,
y,
order = c(5, 22),
include_mean = TRUE,
parallel = list()
)
bvharemp
class is a list that has
Many components of stats::optim()
or optimParallel::optimParallel()
Corresponding bvharspec
Chosen Bayesian model
Marginal likelihood of the final model
Empirical Bayes optimization bound specification defined by bound_bvhar()
.
Additional arguments for stats::optim()
.
Hyperparameter eps
is fixed. By default, 1e-04
.
Time series data
Order for BVAR or BVHAR. p
of bvar_minnesota()
or har
of bvhar_minnesota()
. By default, c(5, 22)
for har
.
Add constant term (Default: TRUE
) or not (FALSE
)
List the same argument of optimParallel::optimParallel()
. By default, this is empty, and the function does not execute parallel computation.
Giannone, D., Lenza, M., & Primiceri, G. E. (2015). Prior Selection for Vector Autoregressions. Review of Economics and Statistics, 97(2).
Kim, Y. G., and Baek, C. (2024). Bayesian vector heterogeneous autoregressive modeling. Journal of Statistical Computation and Simulation, 94(6), 1139-1157.
bound_bvhar()
to define L-BFGS-B optimization bounds.
Individual functions: choose_bvar()