This function gives connectedness table with h-step ahead normalized spillover index (a.k.a. variance shares).
dynamic_spillover(object, n_ahead = 10L, ...)# S3 method for bvhardynsp
print(x, digits = max(3L, getOption("digits") - 3L), ...)
# S3 method for bvhardynsp
knit_print(x, ...)
# S3 method for olsmod
dynamic_spillover(object, n_ahead = 10L, window, num_thread = 1, ...)
# S3 method for normaliw
dynamic_spillover(
object,
n_ahead = 10L,
window,
num_iter = 1000L,
num_burn = floor(num_iter/2),
thinning = 1,
num_thread = 1,
...
)
# S3 method for ldltmod
dynamic_spillover(
object,
n_ahead = 10L,
window,
level = 0.05,
sparse = FALSE,
num_thread = 1,
...
)
# S3 method for svmod
dynamic_spillover(
object,
n_ahead = 10L,
level = 0.05,
sparse = FALSE,
num_thread = 1,
...
)
Model object
step to forecast. By default, 10.
not used
bvhardynsp
object
digit option to print
Window size
Number to sample MNIW distribution
Number of burn-in
Thinning every thinning-th iteration
Specify alpha of confidence interval level 100(1 - alpha) percentage. By default, .05.
Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of forecasting, 28(1), 57-66.