Learn R Programming

bvhar (version 2.2.2)

forecast_expand: Out-of-sample Forecasting based on Expanding Window

Description

This function conducts expanding window forecasting.

Usage

forecast_expand(object, n_ahead, y_test, num_thread = 1, ...)

# S3 method for olsmod forecast_expand(object, n_ahead, y_test, num_thread = 1, ...)

# S3 method for normaliw forecast_expand(object, n_ahead, y_test, num_thread = 1, use_fit = TRUE, ...)

# S3 method for ldltmod forecast_expand( object, n_ahead, y_test, num_thread = 1, level = 0.05, stable = FALSE, sparse = FALSE, med = FALSE, lpl = FALSE, use_fit = TRUE, verbose = FALSE, ... )

# S3 method for svmod forecast_expand( object, n_ahead, y_test, num_thread = 1, level = 0.05, use_sv = TRUE, stable = FALSE, sparse = FALSE, med = FALSE, lpl = FALSE, use_fit = TRUE, verbose = FALSE, ... )

Value

predbvhar_expand

class

Arguments

object

Model object

n_ahead

Step to forecast in rolling window scheme

y_test

Test data to be compared. Use divide_ts() if you don't have separate evaluation dataset.

num_thread

[Experimental] Number of threads

...

Additional arguments.

use_fit

[Experimental] Use object result for the first window. By default, TRUE.

level

Specify alpha of confidence interval level 100(1 - alpha) percentage. By default, .05.

stable

[Experimental] Filter only stable coefficient draws in MCMC records.

sparse

[Experimental] Apply restriction. By default, FALSE.

med

[Experimental] If TRUE, use median of forecast draws instead of mean (default).

lpl

[Experimental] Compute log-predictive likelihood (LPL). By default, FALSE.

verbose

Print the progress bar in the console. By default, FALSE.

use_sv

Use SV term

Details

Expanding windows forecasting fixes the starting period. It moves the window ahead and forecast h-ahead in y_test set.

References

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). OTEXTS. https://otexts.com/fpp3/