This function conducts rolling window forecasting.
forecast_roll(object, n_ahead, y_test, num_thread = 1, ...)# S3 method for bvharcv
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.bvharcv(x)
# S3 method for bvharcv
knit_print(x, ...)
# S3 method for olsmod
forecast_roll(object, n_ahead, y_test, num_thread = 1, ...)
# S3 method for normaliw
forecast_roll(object, n_ahead, y_test, num_thread = 1, use_fit = TRUE, ...)
# S3 method for ldltmod
forecast_roll(
object,
n_ahead,
y_test,
num_thread = 1,
level = 0.05,
stable = FALSE,
sparse = FALSE,
med = FALSE,
lpl = FALSE,
use_fit = TRUE,
verbose = FALSE,
...
)
# S3 method for svmod
forecast_roll(
object,
n_ahead,
y_test,
num_thread = 1,
level = 0.05,
use_sv = TRUE,
stable = FALSE,
sparse = FALSE,
med = FALSE,
lpl = FALSE,
use_fit = TRUE,
verbose = FALSE,
...
)
predbvhar_roll
Model object
Step to forecast in rolling window scheme
Test data to be compared. Use divide_ts()
if you don't have separate evaluation dataset.
not used
Any object
digit option to print
Specify alpha of confidence interval level 100(1 - alpha) percentage. By default, .05.
If
TRUE
, use median of forecast draws instead of mean (default).
Print the progress bar in the console. By default, FALSE
.
Use SV term
Rolling windows forecasting fixes window size.
It moves the window ahead and forecast h-ahead in y_test
set.
Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). OTEXTS.