Computes responses to impulses or orthogonal impulses
# S3 method for varlse
irf(object, lag_max = 10, orthogonal = TRUE, impulse_var, response_var, ...)# S3 method for vharlse
irf(object, lag_max = 10, orthogonal = TRUE, impulse_var, response_var, ...)
# S3 method for bvharirf
print(x, digits = max(3L, getOption("digits") - 3L), ...)
irf(object, lag_max, orthogonal, impulse_var, response_var, ...)
is.bvharirf(x)
# S3 method for bvharirf
knit_print(x, ...)
bvharirf
Model object
Maximum lag to investigate the impulse responses (By default, 10
)
Orthogonal impulses (TRUE
) or just impulses (FALSE
)
Impulse variables character vector. If not specified, use every variable.
Response variables character vector. If not specified, use every variable.
not used
Any object
digit option to print
If orthogonal = FALSE
, the function gives \(W_j\) VMA representation of the process such that
$$Y_t = \sum_{j = 0}^\infty W_j \epsilon_{t - j}$$
If orthogonal = TRUE
, it gives orthogonalized VMA representation $$\Theta$$.
Based on variance decomposition (Cholesky decomposition)
$$\Sigma = P P^T$$
where \(P\) is lower triangular matrix,
impulse response analysis if performed under MA representation
$$y_t = \sum_{i = 0}^\infty \Theta_i v_{t - i}$$
Here,
$$\Theta_i = W_i P$$
and \(v_t = P^{-1} \epsilon_t\) are orthogonal.
Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.
VARtoVMA()
VHARtoVMA()