Forecasts multivariate time series using given model.
# S3 method for varlse
predict(object, n_ahead, level = 0.05, ...)# S3 method for vharlse
predict(object, n_ahead, level = 0.05, ...)
# S3 method for bvarmn
predict(object, n_ahead, n_iter = 100L, level = 0.05, num_thread = 1, ...)
# S3 method for bvharmn
predict(object, n_ahead, n_iter = 100L, level = 0.05, num_thread = 1, ...)
# S3 method for bvarflat
predict(object, n_ahead, n_iter = 100L, level = 0.05, num_thread = 1, ...)
# S3 method for bvarldlt
predict(
object,
n_ahead,
level = 0.05,
stable = FALSE,
num_thread = 1,
sparse = FALSE,
med = FALSE,
warn = FALSE,
...
)
# S3 method for bvharldlt
predict(
object,
n_ahead,
level = 0.05,
stable = FALSE,
num_thread = 1,
sparse = FALSE,
med = FALSE,
warn = FALSE,
...
)
# S3 method for bvarsv
predict(
object,
n_ahead,
level = 0.05,
stable = FALSE,
num_thread = 1,
use_sv = TRUE,
sparse = FALSE,
med = FALSE,
warn = FALSE,
...
)
# S3 method for bvharsv
predict(
object,
n_ahead,
level = 0.05,
stable = FALSE,
num_thread = 1,
use_sv = TRUE,
sparse = FALSE,
med = FALSE,
warn = FALSE,
...
)
# S3 method for predbvhar
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.predbvhar(x)
# S3 method for predbvhar
knit_print(x, ...)
predbvhar
class with the following components:
object$process
forecast matrix
standard error matrix
lower confidence interval
upper confidence interval
lower CI adjusted (Bonferroni)
upper CI adjusted (Bonferroni)
object$y
Model object
step to forecast
Specify alpha of confidence interval level 100(1 - alpha) percentage. By default, .05.
not used
Number to sample residual matrix from inverse-wishart distribution. By default, 100.
Number of threads
Apply restriction. By default,
FALSE
.
Give CI level (e.g. .05
) instead of TRUE
to use credible interval across MCMC for restriction.
If
TRUE
, use median of forecast draws instead of mean (default).
Give warning for stability of each coefficients record. By default, FALSE
.
Use SV term
Any object
digit option to print
See pp35 of Lütkepohl (2007). Consider h-step ahead forecasting (e.g. n + 1, ... n + h).
Let \(y_{(n)}^T = (y_n^T, ..., y_{n - p + 1}^T, 1)\). Then one-step ahead (point) forecasting: $$\hat{y}_{n + 1}^T = y_{(n)}^T \hat{B}$$
Recursively, let \(\hat{y}_{(n + 1)}^T = (\hat{y}_{n + 1}^T, y_n^T, ..., y_{n - p + 2}^T, 1)\). Then two-step ahead (point) forecasting: $$\hat{y}_{n + 2}^T = \hat{y}_{(n + 1)}^T \hat{B}$$
Similarly, h-step ahead (point) forecasting: $$\hat{y}_{n + h}^T = \hat{y}_{(n + h - 1)}^T \hat{B}$$
How about confident region? Confidence interval at h-period is $$y_{k,t}(h) \pm z_(\alpha / 2) \sigma_k (h)$$
Joint forecast region of \(100(1-\alpha)\)% can be computed by $$\{ (y_{k, 1}, y_{k, h}) \mid y_{k, n}(i) - z_{(\alpha / 2h)} \sigma_n(i) \le y_{n, i} \le y_{k, n}(i) + z_{(\alpha / 2h)} \sigma_k(i), i = 1, \ldots, h \}$$ See the pp41 of Lütkepohl (2007).
To compute covariance matrix, it needs VMA representation: $$Y_{t}(h) = c + \sum_{i = h}^{\infty} W_{i} \epsilon_{t + h - i} = c + \sum_{i = 0}^{\infty} W_{h + i} \epsilon_{t - i}$$
Then
$$\Sigma_y(h) = MSE [ y_t(h) ] = \sum_{i = 0}^{h - 1} W_i \Sigma_{\epsilon} W_i^T = \Sigma_y(h - 1) + W_{h - 1} \Sigma_{\epsilon} W_{h - 1}^T$$
Let \(T_{HAR}\) is VHAR linear transformation matrix. Since VHAR is the linearly transformed VAR(22), let \(y_{(n)}^T = (y_n^T, y_{n - 1}^T, ..., y_{n - 21}^T, 1)\).
Then one-step ahead (point) forecasting: $$\hat{y}_{n + 1}^T = y_{(n)}^T T_{HAR} \hat{\Phi}$$
Recursively, let \(\hat{y}_{(n + 1)}^T = (\hat{y}_{n + 1}^T, y_n^T, ..., y_{n - 20}^T, 1)\). Then two-step ahead (point) forecasting: $$\hat{y}_{n + 2}^T = \hat{y}_{(n + 1)}^T T_{HAR} \hat{\Phi}$$
and h-step ahead (point) forecasting: $$\hat{y}_{n + h}^T = \hat{y}_{(n + h - 1)}^T T_{HAR} \hat{\Phi}$$
Point forecasts are computed by posterior mean of the parameters. See Section 3 of Bańbura et al. (2010).
Let \(\hat{B}\) be the posterior MN mean and let \(\hat{V}\) be the posterior MN precision.
Then predictive posterior for each step
$$y_{n + 1} \mid \Sigma_e, y \sim N( vec(y_{(n)}^T A), \Sigma_e \otimes (1 + y_{(n)}^T \hat{V}^{-1} y_{(n)}) )$$ $$y_{n + 2} \mid \Sigma_e, y \sim N( vec(\hat{y}_{(n + 1)}^T A), \Sigma_e \otimes (1 + \hat{y}_{(n + 1)}^T \hat{V}^{-1} \hat{y}_{(n + 1)}) )$$ and recursively, $$y_{n + h} \mid \Sigma_e, y \sim N( vec(\hat{y}_{(n + h - 1)}^T A), \Sigma_e \otimes (1 + \hat{y}_{(n + h - 1)}^T \hat{V}^{-1} \hat{y}_{(n + h - 1)}) )$$
Let \(\hat\Phi\) be the posterior MN mean and let \(\hat\Psi\) be the posterior MN precision.
Then predictive posterior for each step
$$y_{n + 1} \mid \Sigma_e, y \sim N( vec(y_{(n)}^T \tilde{T}^T \Phi), \Sigma_e \otimes (1 + y_{(n)}^T \tilde{T} \hat\Psi^{-1} \tilde{T} y_{(n)}) )$$ $$y_{n + 2} \mid \Sigma_e, y \sim N( vec(y_{(n + 1)}^T \tilde{T}^T \Phi), \Sigma_e \otimes (1 + y_{(n + 1)}^T \tilde{T} \hat\Psi^{-1} \tilde{T} y_{(n + 1)}) )$$ and recursively, $$y_{n + h} \mid \Sigma_e, y \sim N( vec(y_{(n + h - 1)}^T \tilde{T}^T \Phi), \Sigma_e \otimes (1 + y_{(n + h - 1)}^T \tilde{T} \hat\Psi^{-1} \tilde{T} y_{(n + h - 1)}) )$$
Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.
Corsi, F. (2008). A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 7(2), 174-196.
Baek, C. and Park, M. (2021). Sparse vector heterogeneous autoregressive modeling for realized volatility. J. Korean Stat. Soc. 50, 495-510.
Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2013). Bayesian data analysis. Chapman and Hall/CRC.
Karlsson, S. (2013). Chapter 15 Forecasting with Bayesian Vector Autoregression. Handbook of Economic Forecasting, 2, 791-897.
Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.
Ghosh, S., Khare, K., & Michailidis, G. (2018). High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models. Journal of the American Statistical Association, 114(526).
Korobilis, D. (2013). VAR FORECASTING USING BAYESIAN VARIABLE SELECTION. Journal of Applied Econometrics, 28(2).
Korobilis, D. (2013). VAR FORECASTING USING BAYESIAN VARIABLE SELECTION. Journal of Applied Econometrics, 28(2).
Huber, F., Koop, G., & Onorante, L. (2021). Inducing Sparsity and Shrinkage in Time-Varying Parameter Models. Journal of Business & Economic Statistics, 39(3), 669-683.