set_ldlt(ig_shape = 3, ig_scl = 0.01)set_sv(ig_shape = 3, ig_scl = 0.01, initial_mean = 1, initial_prec = 0.1)
# S3 method for covspec
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.covspec(x)
is.svspec(x)
is.ldltspec(x)
Inverse-Gamma shape of Cholesky diagonal vector.
For SV (set_sv()
), this is for state variance.
Inverse-Gamma scale of Cholesky diagonal vector.
For SV (set_sv()
), this is for state variance.
Prior mean of initial state.
Prior precision of initial state.
Any object
digit option to print
not used
set_ldlt()
specifies LDLT of precision matrix,
$$\Sigma^{-1} = L^T D^{-1} L$$
set_sv()
specifices time varying precision matrix under stochastic volatility framework based on
$$\Sigma_t^{-1} = L^T D_t^{-1} L$$
Carriero, A., Chan, J., Clark, T. E., & Marcellino, M. (2022). Corrigendum to “Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors” [J. Econometrics 212 (1)(2019) 137-154]. Journal of Econometrics, 227(2), 506-512.
Chan, J., Koop, G., Poirier, D., & Tobias, J. (2019). Bayesian Econometric Methods (2nd ed., Econometric Exercises). Cambridge: Cambridge University Press.