This function generates multivariate time series dataset that follows VAR(p).
sim_vhar(
num_sim,
num_burn,
vhar_coef,
week = 5L,
month = 22L,
sig_error = diag(ncol(vhar_coef)),
init = matrix(0L, nrow = month, ncol = ncol(vhar_coef)),
method = c("eigen", "chol"),
process = c("gaussian", "student"),
t_param = 5
)T x k matrix
Number to generated process
Number of burn-in
VAR coefficient. The format should be the same as the output of coef() from var_lm()
Weekly order of VHAR. By default, 5.
Weekly order of VHAR. By default, 22.
Variance matrix of the error term. By default, diag(dim).
Initial y1, ..., yp matrix to simulate VAR model. Try matrix(0L, nrow = month, ncol = dim).
Method to compute \(\Sigma^{1/2}\).
Choose between eigen (spectral decomposition) and chol (cholesky decomposition).
By default, eigen.
Process to generate error term.
gaussian: Normal distribution (default) or student: Multivariate t-distribution.
Let \(M\) be the month order, e.g. \(M = 22\).
Generate \(\epsilon_1, \epsilon_n \sim N(0, \Sigma)\)
For i = 1, ... n, $$y_{M + i} = (y_{M + i - 1}^T, \ldots, y_i^T, 1)^T C_{HAR}^T \Phi + \epsilon_i$$
Then the output is \((y_{M + 1}, \ldots, y_{n + M})^T\)
For i = 1, ... n, $$y_{p + i} = (y_{p + i - 1}^T, \ldots, y_i^T, 1)^T B + \epsilon_i$$
Then the output is \((y_{p + 1}, \ldots, y_{n + p})^T\)
Initial values might be set to be zero vector or \((I_m - A_1 - \cdots - A_p)^{-1} c\).
Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.