Learn R Programming

bvhar (version 2.2.2)

summary.normaliw: Summarizing Bayesian Multivariate Time Series Model

Description

summary method for normaliw class.

Usage

# S3 method for normaliw
summary(
  object,
  num_chains = 1,
  num_iter = 1000,
  num_burn = floor(num_iter/2),
  thinning = 1,
  verbose = FALSE,
  num_thread = 1,
  ...
)

# S3 method for summary.normaliw print(x, digits = max(3L, getOption("digits") - 3L), ...)

# S3 method for summary.normaliw knit_print(x, ...)

Value

summary.normaliw

class has the following components:

names

Variable names

totobs

Total number of the observation

obs

Sample size used when training = totobs - p

p

Lag of VAR

m

Dimension of the data

call

Matched call

spec

Model specification (bvharspec)

mn_mean

MN Mean of posterior distribution (MN-IW)

mn_prec

MN Precision of posterior distribution (MN-IW)

iw_scale

IW scale of posterior distribution (MN-IW)

iw_shape

IW df of posterior distribution (MN-IW)

iter

Number of MCMC iterations

burn

Number of MCMC burn-in

thin

MCMC thinning

alpha_record (BVAR) and phi_record (BVHAR)

MCMC record of coefficients vector

psi_record

MCMC record of upper cholesky factor

omega_record

MCMC record of diagonal of cholesky factor

eta_record

MCMC record of upper part of cholesky factor

param

MCMC record of every parameter

coefficients

Posterior mean of coefficients

covmat

Posterior mean of covariance

Arguments

object

A normaliw object

num_chains

Number of MCMC chains

num_iter

MCMC iteration number

num_burn

Number of burn-in (warm-up). Half of the iteration is the default choice.

thinning

Thinning every thinning-th iteration

verbose

Print the progress bar in the console. By default, FALSE.

num_thread

Number of threads

...

not used

x

summary.normaliw object

digits

digit option to print

Details

From Minnesota prior, set of coefficient matrices and residual covariance matrix have matrix Normal Inverse-Wishart distribution.

BVAR:

$$(A, \Sigma_e) \sim MNIW(\hat{A}, \hat{V}^{-1}, \hat\Sigma_e, \alpha_0 + n)$$ where \(\hat{V} = X_\ast^T X_\ast\) is the posterior precision of MN.

BVHAR:

$$(\Phi, \Sigma_e) \sim MNIW(\hat\Phi, \hat{V}_H^{-1}, \hat\Sigma_e, \nu + n)$$ where \(\hat{V}_H = X_{+}^T X_{+}\) is the posterior precision of MN.

References

Litterman, R. B. (1986). Forecasting with Bayesian Vector Autoregressions: Five Years of Experience. Journal of Business & Economic Statistics, 4(1), 25.

Bańbura, M., Giannone, D., & Reichlin, L. (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics, 25(1).