summary
method for vharlse
class.
# S3 method for vharlse
summary(object, ...)# S3 method for summary.vharlse
print(x, digits = max(3L, getOption("digits") - 3L), signif_code = TRUE, ...)
# S3 method for summary.vharlse
knit_print(x, ...)
summary.vharlse
class additionally computes the following
names
Variable names
totobs
Total number of the observation
obs
Sample size used when training = totobs
- p
p
3
week
Order for weekly term
month
Order for monthly term
coefficients
Coefficient Matrix
call
Matched call
process
Process: VAR
covmat
Covariance matrix of the residuals
corrmat
Correlation matrix of the residuals
roots
Roots of characteristic polynomials
is_stable
Whether the process is stable or not based on roots
log_lik
log-likelihood
ic
Information criteria vector
AIC
- AIC
BIC
- BIC
HQ
- HQ
FPE
- FPE
A vharlse
object
not used
summary.vharlse
object
digit option to print
Check significant rows (Default: TRUE
)
Lütkepohl, H. (2007). New Introduction to Multiple Time Series Analysis. Springer Publishing.
Corsi, F. (2008). A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 7(2), 174-196.
Baek, C. and Park, M. (2021). Sparse vector heterogeneous autoregressive modeling for realized volatility. J. Korean Stat. Soc. 50, 495-510.