This function conducts rolling window forecasting.
forecast_roll(
object,
n_ahead,
y_test,
level = 0.05,
newxreg = NULL,
num_thread = 1,
...
)# S3 method for bvharcv
print(x, digits = max(3L, getOption("digits") - 3L), ...)
is.bvharcv(x)
# S3 method for bvharcv
knit_print(x, ...)
# S3 method for olsmod
forecast_roll(
object,
n_ahead,
y_test,
level = 0.05,
newxreg = NULL,
num_thread = 1,
...
)
# S3 method for normaliw
forecast_roll(
object,
n_ahead,
y_test,
level = 0.05,
newxreg = NULL,
num_thread = 1,
use_fit = TRUE,
...
)
# S3 method for ldltmod
forecast_roll(
object,
n_ahead,
y_test,
level = 0.05,
newxreg = NULL,
num_thread = 1,
stable = FALSE,
sparse = FALSE,
med = FALSE,
lpl = FALSE,
mcmc = TRUE,
use_fit = TRUE,
verbose = FALSE,
...
)
# S3 method for svmod
forecast_roll(
object,
n_ahead,
y_test,
level = 0.05,
newxreg = NULL,
num_thread = 1,
use_sv = TRUE,
stable = FALSE,
sparse = FALSE,
med = FALSE,
lpl = FALSE,
mcmc = TRUE,
use_fit = TRUE,
verbose = FALSE,
...
)
predbvhar_roll
Model object
Step to forecast in rolling window scheme
Test data to be compared. Use divide_ts() if you don't have separate evaluation dataset.
Specify alpha of confidence interval level 100(1 - alpha) percentage. By default, .05.
New values for exogenous variables.
Should have the same row numbers as y_test.
not used
Any object
digit option to print
If
TRUE, use median of forecast draws instead of mean (default).
Print the progress bar in the console. By default, FALSE.
Use SV term
Rolling windows forecasting fixes window size.
It moves the window ahead and forecast h-ahead in y_test set.
Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd ed.). OTEXTS.