Learn R Programming

c212 (version 0.98)

c212.BONF: Implementation of Bonferroni correction for error control

Description

The Bonferroni correction controls the Familywise Error Rate.

Usage

c212.BONF(trial.data, alpha = 0.05)

Arguments

trial.data

File or data frame containing the p-values for the hypotheses being tested. The data must include a column called p which contains the p-values of the hypotheses.

alpha

The value for error control, e.g. 0.05.

Value

The subset of hypotheses in file or trial.data deemed significant.

References

Matthews, John N. S. (2006) Introduction to Randomized Controlled Clinical Trials, Second Edition. Chapman & Hall/CRC Texts in Statistical Science.

Examples

Run this code
# NOT RUN {
trial.data <- data.frame(B = c(1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
j = c(1, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5),
AE = c("AE1", "AE2", "AE3", "AE4", "AE5", "AE6", "AE7", "AE8", "AE9", "AE10", "AE11",
"AE12", "AE13", "AE14", "AE15", "AE16", "AE17"),
p = c(0.135005, 0.010000, 0.001000, 0.005000, 0.153501, 0.020000, 0.0013, 0.0023, 0.011,
0.023000, 0.016, 0.0109, 0.559111, 0.751986, 0.308339, 0.837154, 0.325882))


c212.BONF(trial.data, 0.05)


# }
# NOT RUN {
  B j  AE      p
1 2 2 AE3 0.0010
2 3 2 AE7 0.0013
3 3 3 AE8 0.0023
# }

Run the code above in your browser using DataLab