Learn R Programming

c212 (version 0.98)

c212.LSL: Implementaion of the least-slope estimator estimator (LSL) for the proportion of true null hypotheses.

Description

The least-slope estimator estimator (LSL) is one of a number of estimators of the proportion of true null hypotheses. This implementation assumes a grouped structure for the data.

Usage

c212.LSL(trial.data)

Arguments

trial.data

Data frame containing the p-values for the hypotheses being tested. The data must contain the following columns: B: the index or name of the groupings; p: the p-values of the hypotheses.

Value

An estimate of the proportion of true null hypotheses.

References

Hu, J. X. and Zhao, H. and Zhou, H. H. (2010). False Discovery Rate Control With Groups. J Am Stat Assoc, 105(491):1215-1227.

Benjamini Y, Hochberg Y. (2000). On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics. Journal of Educational and Behavioral Statistics, 25(1):60<U+2013>83.

Examples

Run this code
# NOT RUN {
data(c212.FDR.data)
lsl <- c212.LSL(c212.FDR.data)
print(lsl)
# }
# NOT RUN {
          B       pi0
1 Bdy-sys_5 1.0000000
2 Bdy-sys_6 1.0000000
3 Bdy-sys_7 1.0000000
4 Bdy-sys_8 1.0000000
5 Bdy-sys_2 1.0000000
6 Bdy-sys_3 0.2857143
7 Bdy-sys_4 1.0000000
8 Bdy-sys_1 1.0000000
# }

Run the code above in your browser using DataLab