- data
data.frame with a grouping variable named 'group' and a raw score variable
named 'raw'.
- group
grouping variable in the data, e. g. age groups, grades ...
Setting group = FALSE deactivates modeling in dependence of age. Use this in case you do want
conventional norm tables.
- raw
the raw scores
- age
the continuous explanatory variable; by default set to "group"
- k
The power parameter, default = 4
- t
the age power parameter (default NULL). If not set, cNORM automatically uses k. The age power parameter
can be used to specify the k to produce rectangular matrices and specify the course of scores per independently from k
- width
if a width is provided, the function switches to rankBySlidingWindow to determine the
observed raw scores, otherwise, ranking is done by group (default)
- weights
Vector or variable name in the dataset with weights for each individual case. It can be used
to compensate for moderate imbalances due to insufficient norm data stratification. Weights should be numerical
and positive. Please use the 'computeWeights' function for this purpose.
- scale
type of norm scale, either T (default), IQ, z or percentile (= no
transformation); a double vector with the mean and standard deviation can as well,
be provided f. e. c(10, 3) for Wechsler scale index point
- descend
ranking order (default descent = FALSE): inverses the
ranking order with higher raw scores getting lower norm scores; relevant
for example when norming error scores, where lower scores mean higher
performance
- silent
set to TRUE to suppress messages