data(data.simulation)
# bivariate for mean and variance; univariate for shape parameter
cases = c(2,2,1)
# 2 knots at time direction for each parameter
nknots.tp = c(2,2,2)
# 2 knots at covariate direction for mean and variance
nknots.cp = c(2,2)
basis.list <- lapply(1:3, function(k)
kpbb(DST$tp, DST$cp, nknots.tp = nknots.tp[k],
nknots.cp= nknots.cp[k], sub.case=cases[k]))
cp.hat <- DST$pars # true parameters
cp.hat$var <- exp(cp.hat$logvar) # follow the fomart stricely: (mean, var, skew)
beta <- cp2beta(cp.hat, basis.list)
cp.recover <- beta2cp(beta, basis.list)
norm(cp.hat$mean - cp.recover$mean)
Run the code above in your browser using DataLab