This function generates a bootstrap method
sampling distribution
for the indirect effect centrality
over a specific time interval
BootIndirectCentral(phi, phi_hat, delta_t, ncores = NULL, tol = 0.01)
Returns an object
of class ctmedboot
which is a list with the following elements:
Function call.
Function arguments.
Function used ("BootIndirectCentral").
A list with length of length(delta_t)
.
Each element in the output
list has the following elements:
A vector of indirect effect centrality.
A matrix of bootstrap indirect effect centrality.
List of numeric matrices.
Each element of the list is a bootstrap estimate
of the drift matrix (
Numeric matrix.
The estimated drift matrix (phi_hat
should have row and column names
pertaining to the variables in the system.
Numeric.
Time interval
(
Positive integer.
Number of cores to use.
If ncores = NULL
,
use a single core.
Consider using multiple cores
when number of replications R
is a large value.
Numeric. Smallest possible time interval to allow.
Ivan Jacob Agaloos Pesigan
See IndirectCentral()
more details.
Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. tools:::Rd_expr_doi("10.2307/271028")
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. tools:::Rd_expr_doi("10.1080/10705511.2014.973960")
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. tools:::Rd_expr_doi("10.1007/s11336-021-09767-0")
Other Continuous Time Mediation Functions:
BootBeta()
,
BootBetaStd()
,
BootMed()
,
BootMedStd()
,
BootTotalCentral()
,
DeltaBeta()
,
DeltaBetaStd()
,
DeltaIndirectCentral()
,
DeltaMed()
,
DeltaMedStd()
,
DeltaTotalCentral()
,
Direct()
,
DirectStd()
,
ExpCov()
,
ExpMean()
,
Indirect()
,
IndirectCentral()
,
IndirectStd()
,
MCBeta()
,
MCBetaStd()
,
MCIndirectCentral()
,
MCMed()
,
MCMedStd()
,
MCPhi()
,
MCPhiSigma()
,
MCTotalCentral()
,
Med()
,
MedStd()
,
PosteriorBeta()
,
PosteriorIndirectCentral()
,
PosteriorMed()
,
PosteriorTotalCentral()
,
Total()
,
TotalCentral()
,
TotalStd()
,
Trajectory()
if (FALSE) {
library(bootStateSpace)
# prepare parameters
## number of individuals
n <- 50
## time points
time <- 100
delta_t <- 0.10
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- matrix(
data = c(
1.0,
0.2,
0.2,
0.2,
1.0,
0.2,
0.2,
0.2,
1.0
),
nrow = p
)
sigma0_l <- t(chol(sigma0))
mu <- rep(x = 0, times = p)
phi <- matrix(
data = c(
-0.357,
0.771,
-0.450,
0.0,
-0.511,
0.729,
0,
0,
-0.693
),
nrow = p
)
sigma <- matrix(
data = c(
0.24455556,
0.02201587,
-0.05004762,
0.02201587,
0.07067800,
0.01539456,
-0.05004762,
0.01539456,
0.07553061
),
nrow = p
)
sigma_l <- t(chol(sigma))
## measurement model
k <- 3
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.2 * diag(k)
theta_l <- t(chol(theta))
boot <- PBSSMOUFixed(
R = 10L, # use at least 1000 in actual research
path = getwd(),
prefix = "ou",
n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
mu = mu,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
ncores = NULL, # consider using multiple cores
seed = 42
)
phi_hat <- phi
colnames(phi_hat) <- rownames(phi_hat) <- c("x", "m", "y")
phi <- extract(object = boot, what = "phi")
# Specific time interval ----------------------------------------------------
BootIndirectCentral(
phi = phi,
phi_hat = phi_hat,
delta_t = 1
)
# Range of time intervals ---------------------------------------------------
boot <- BootIndirectCentral(
phi = phi,
phi_hat = phi_hat,
delta_t = 1:5
)
plot(boot)
plot(boot, type = "bc") # bias-corrected
# Methods -------------------------------------------------------------------
# BootIndirectCentral has a number of methods including
# print, summary, confint, and plot
print(boot)
summary(boot)
confint(boot, level = 0.95)
print(boot, type = "bc") # bias-corrected
summary(boot, type = "bc")
confint(boot, level = 0.95, type = "bc")
}
Run the code above in your browser using DataLab