Learn R Programming

ca (version 0.2)

mjca: Multiple and joint correspondence analysis

Description

Computation of multiple and joint correspondence analysis.

Usage

mjca(obj, nd = 2, lambda = "adjusted", supcol = NA, maxit = 50, epsilon = 0.0001)

Arguments

obj
A response pattern matrix containing factors.
nd
Number of dimensions to be included in the output; if NA the maximum possible dimensions are included.
lambda
Gives the scaling method. Possible values include "indicator", "Burt", "adjusted" and "JCA". Using lambda = "JCA" results in a joint correspondence analysis using iterative adjusment of the Burt matrix in the solution space.
supcol
Indices of supplementary columns.
maxit
The maximum number of iterations (Joint Correspondence Analysis).
epsilon
A convergence criterion (Joint Correspondence Analysis).

Value

  • svEigenvalues (lambda = "indicator") or singular values (lambda = "Burt", "adjusted" or "JCA")
  • lambdaScaling method
  • inertia.ePercentages of explained inertia
  • inertia.tTotal inertia
  • inertia.etTotal percentage of explained inertia with the nd-dimensional solution
  • levelnamesNames of the factor/level combinations
  • levels.nNumber of levels in each factor
  • ndUser-specified dimensionality of the solution
  • nd.maxMaximum possible dimensionality of the solution
  • rownamesRow names
  • rowmassRow masses
  • rowdistRow chi-square distances to centroid
  • rowinertiaRow inertias
  • rowcoordRow standard coordinates
  • colnamesColumn names
  • colmassColumn masses
  • coldistColumn chi-square distances to centroid
  • colinertiaColumn inertias
  • colcoordColumn standard coordinates
  • colsupIndices of column supplementary points (of the Burt and Indicator matrix)
  • BurtBurt matrix
  • Burt.updThe updated Burt matrix (JCA only)
  • subinertiaInertias of sub-matrices
  • JCA.iterVector of length two containing the number of iterations and the epsilon (JCA only)
  • callReturn of match.call

Details

The function mjca computes a multiple or joint correspondence analysis based on the eigenvalue decomposition of the Burt matrix.

See Also

eigen, plot.mjca, summary.mjca, print.mjca

Examples

Run this code
library(MASS)
data(farms)
mjca(farms)

# Joint correspondence analysis:
mjca(farms, lambda = "JCA")

Run the code above in your browser using DataLab