Learn R Programming

caOmicsV (version 1.2.0)

getPlotDataSet: Prepare Data Set for caOmicsV Plot

Description

This function will validate each dataset then convert them to matrix and wrap all of them in one list object.

Usage

getPlotDataSet(sampleNames, geneNames, sampleData, heatmapData=list(), categoryData=list(), binaryData=list(), summaryData=list(), secondGeneNames=NULL)

Arguments

sampleNames
character vector, sample names, must be same or exist in every data set.
geneNames
character vector, gene names, must be same or exist in every data set.
sampleData
data frame with rows for samples and columns for features.
heatmapData
list of data frame(s) for heatmap plot. The first column of each data frame is row names and others are numeric values. The list could be empty, or having one or more data frame in a list object. Heatmap data should be log2 values or z-scores.
categoryData
list of data frame(s). The first column of each data frame is row names and others are numeric values. The list could be empty, or having one or more data frame in a list object
binaryData
list of data frame(s). The first column of each data frame is row names and others are binary values. The listcould be none, or one or more data frame in a list object
summaryData
list of data frames with summary information for samples (columns) or for genes (rows). The first column is for ID following by one or more columns of summary data.
secondGeneNames
character vector, gene names that will be plot on right side of biomatrix plot layout

Value

sampleNames
character verctor, sample names
geneNames
character verctor, gene names
secondGeneNames
character verctor, for example, miRNA names
sampleInfo
a data frame, sample information such as Tumor/Normal, age, diagnosis
heatmapData
list of data matrix(s), e.g., RNASeq read counts at gene level
categoryData
list of data matrix(s), such as SNP in a gene, homozygous, or heterozygous, or wildtype
binaryData
list of data matrix(s), e.g., mutation status of the gene
summaryInfo
list of data matrix(s), such as percentage of highly expressed miRNA in all samples

Examples

Run this code

    data(sampleDemoData) 
    data(RNA2miRNA)
    data(RNASeqDemoData)
    data(miRNADemoData)
    data(methylDemoData)
    data(CNVDemoData)

    sampleNames <- as.character(sampleDemoData[,1])
    geneNames <- as.character(RNA2miRNA[,1])
    secondGeneNames <- as.character(RNA2miRNA[,2])

    normals <- grep("Normal", colnames(RNASeqDemoData))
    tumors  <- grep("Tumor", colnames(RNASeqDemoData))
    tumorExpr <- RNASeqDemoData[, tumors]
    normalExpr <- RNASeqDemoData[, normals]
    meanLog2Fold <- log2(rowMeans(tumorExpr/normalExpr))
    summaryData <- data.frame(geneNames, meanLog2Fold)

    plotData <- getPlotDataSet(sampleNames, geneNames, sampleDemoData, 
        heatmapData=list(RNASeqDemoData, miRNADemoData), 
        categoryData=list(methylDemoData), 
        binaryData=list(CNVDemoData), 
        summaryData=list(summaryData), 
        secondGeneNames)

Run the code above in your browser using DataLab