# NOT RUN {
n1 = n0 = 500
## generate data
Z_D <- rbinom(n1, size = 1, prob = 0.3)
Z_C <- rbinom(n0, size = 1, prob = 0.7)
Y_C_Z0 <- rnorm(n0, 0.1, 1)
Y_D_Z0 <- rnorm(n1, 1.1, 1)
Y_C_Z1 <- rnorm(n0, 0.2, 1)
Y_D_Z1 <- rnorm(n1, 0.9, 1)
M0 <- Y_C_Z0 * (Z_C == 0) + Y_C_Z1 * (Z_C == 1)
M1 <- Y_D_Z0 * (Z_D == 0) + Y_D_Z1 * (Z_D == 1)
diseaseData <- data.frame(M = M1, Z = Z_D)
controlData <- data.frame(M = M0, Z = Z_C)
userFormula = "M~Z"
### calculate confidence band by controlling sensitivity
### using different monotonicity respecting methods
# }
# NOT RUN {
ROC_CB1 <- caROC_CB(diseaseData,controlData,userFormula,
mono_resp_method = "none",
CB_alpha = 0.95,
nbin = 100,verbose = FALSE)
ROC_CB2 <- caROC_CB(diseaseData,controlData,userFormula,
mono_resp_method = "ROC",
CB_alpha = 0.95,
nbin = 100,verbose = FALSE)
# }
Run the code above in your browser using DataLab